Skip to main content

AMM Trait Implementation

The Saros Rust DLMM SDK provides a flexible AMM trait system that allows you to implement custom automated market making strategies. This trait-based approach enables modularity and testability.

Core AMM Trait​

The foundation of all AMM implementations:

use async_trait::async_trait;
use saros_dlmm_sdk_rs::{DlmmPool, LiquidityPosition, SwapQuote};
use solana_sdk::pubkey::Pubkey;

#[async_trait]
pub trait AmmStrategy: Send + Sync {
/// Calculate optimal position parameters for the current market conditions
async fn calculate_position_params(
&self,
pool: &DlmmPool,
available_capital: u64,
) -> Result<PositionParams, AmmError>;

/// Determine if a position should be rebalanced
async fn should_rebalance(
&self,
position: &LiquidityPosition,
pool: &DlmmPool,
) -> Result<bool, AmmError>;

/// Execute rebalancing logic
async fn rebalance_position(
&self,
position: &mut LiquidityPosition,
pool: &DlmmPool,
) -> Result<RebalanceResult, AmmError>;

/// Calculate expected returns for a position
fn calculate_expected_returns(
&self,
position: &LiquidityPosition,
pool: &DlmmPool,
time_horizon_hours: u32,
) -> Result<ExpectedReturns, AmmError>;
}

#[derive(Debug, Clone)]
pub struct PositionParams {
pub lower_bin: i32,
pub upper_bin: i32,
pub liquidity_x: u64,
pub liquidity_y: u64,
pub strategy_type: StrategyType,
}

#[derive(Debug)]
pub struct RebalanceResult {
pub old_position: LiquidityPosition,
pub new_position: LiquidityPosition,
pub transaction_signature: String,
pub gas_cost: u64,
}

#[derive(Debug)]
pub struct ExpectedReturns {
pub daily_fee_yield: f64,
pub impermanent_loss_risk: f64,
pub total_expected_return: f64,
pub confidence_interval: (f64, f64),
}

Strategy Types​

1. Passive Range Strategy​

Provides liquidity in a fixed range around current price:

#[derive(Debug, Clone)]
pub enum StrategyType {
PassiveRange { range_percentage: f64 },
ActiveRebalancing { trigger_percentage: f64 },
DeltaNeutral { hedge_ratio: f64 },
VolatilityFarming { volatility_threshold: f64 },
}

pub struct PassiveRangeStrategy {
range_percentage: f64,
min_position_size: u64,
}

#[async_trait]
impl AmmStrategy for PassiveRangeStrategy {
async fn calculate_position_params(
&self,
pool: &DlmmPool,
available_capital: u64,
) -> Result<PositionParams, AmmError> {
let current_price = pool.get_current_price()?;

// Calculate price range
let lower_price = current_price * (1.0 - self.range_percentage);
let upper_price = current_price * (1.0 + self.range_percentage);

// Convert to bin IDs
let lower_bin = pool.price_to_bin_id(lower_price)?;
let upper_bin = pool.price_to_bin_id(upper_price)?;

// Distribute capital equally between tokens
let liquidity_x = available_capital / 2;
let liquidity_y = available_capital / 2;

Ok(PositionParams {
lower_bin,
upper_bin,
liquidity_x,
liquidity_y,
strategy_type: StrategyType::PassiveRange {
range_percentage: self.range_percentage
},
})
}

async fn should_rebalance(
&self,
position: &LiquidityPosition,
pool: &DlmmPool,
) -> Result<bool, AmmError> {
let current_bin = pool.active_id;

// Rebalance if price moved outside position range
Ok(current_bin < position.lower_bin || current_bin > position.upper_bin)
}

async fn rebalance_position(
&self,
position: &mut LiquidityPosition,
pool: &DlmmPool,
) -> Result<RebalanceResult, AmmError> {
// Remove existing liquidity
let remove_result = pool.remove_liquidity(&position.address).await?;

// Calculate new position parameters
let total_value = remove_result.amount_x + remove_result.amount_y;
let new_params = self.calculate_position_params(pool, total_value).await?;

// Create new position
let new_position = pool.create_position(new_params).await?;

Ok(RebalanceResult {
old_position: position.clone(),
new_position,
transaction_signature: remove_result.signature,
gas_cost: remove_result.gas_cost,
})
}

fn calculate_expected_returns(
&self,
position: &LiquidityPosition,
pool: &DlmmPool,
time_horizon_hours: u32,
) -> Result<ExpectedReturns, AmmError> {
let position_value = position.liquidity_x + position.liquidity_y;
let pool_tvl = pool.get_total_value_locked()?;
let pool_volume_24h = pool.get_volume_24h()?;

// Calculate fee yield
let position_share = position_value as f64 / pool_tvl as f64;
let daily_fees = pool_volume_24h as f64 * (pool.fee_rate as f64 / 10000.0);
let daily_fee_yield = (daily_fees * position_share) / position_value as f64;

// Estimate impermanent loss based on range width
let range_width = (position.upper_bin - position.lower_bin) as f64;
let il_risk = self.range_percentage * 0.5; // Simplified IL calculation

Ok(ExpectedReturns {
daily_fee_yield,
impermanent_loss_risk: il_risk,
total_expected_return: daily_fee_yield - il_risk,
confidence_interval: (daily_fee_yield * 0.8, daily_fee_yield * 1.2),
})
}
}

2. Active Rebalancing Strategy​

Dynamically adjusts positions based on market movement:

pub struct ActiveRebalancingStrategy {
trigger_percentage: f64,
max_gas_cost_percentage: f64,
rebalance_cooldown: std::time::Duration,
last_rebalance: std::sync::Arc<std::sync::RwLock<std::time::Instant>>,
}

#[async_trait]
impl AmmStrategy for ActiveRebalancingStrategy {
async fn calculate_position_params(
&self,
pool: &DlmmPool,
available_capital: u64,
) -> Result<PositionParams, AmmError> {
// Use volatility-adjusted range
let volatility = self.estimate_volatility(pool).await?;
let adjusted_range = 0.01 + (volatility * 0.05); // Base 1% + volatility adjustment

let current_price = pool.get_current_price()?;
let lower_price = current_price * (1.0 - adjusted_range);
let upper_price = current_price * (1.0 + adjusted_range);

let lower_bin = pool.price_to_bin_id(lower_price)?;
let upper_bin = pool.price_to_bin_id(upper_price)?;

Ok(PositionParams {
lower_bin,
upper_bin,
liquidity_x: available_capital * 60 / 100, // Slight bias toward token X
liquidity_y: available_capital * 40 / 100,
strategy_type: StrategyType::ActiveRebalancing {
trigger_percentage: self.trigger_percentage
},
})
}

async fn should_rebalance(
&self,
position: &LiquidityPosition,
pool: &DlmmPool,
) -> Result<bool, AmmError> {
// Check cooldown period
let last_rebalance = *self.last_rebalance.read().unwrap();
if last_rebalance.elapsed() < self.rebalance_cooldown {
return Ok(false);
}

let current_bin = pool.active_id;
let position_center = (position.lower_bin + position.upper_bin) / 2;

// Calculate distance from center as percentage
let distance_from_center = (current_bin - position_center).abs() as f64;
let position_width = (position.upper_bin - position.lower_bin) as f64;
let distance_percentage = distance_from_center / position_width;

// Rebalance if price moved more than trigger percentage from center
Ok(distance_percentage > self.trigger_percentage)
}

async fn estimate_volatility(&self, pool: &DlmmPool) -> Result<f64, AmmError> {
// Get recent price history
let price_history = pool.get_price_history(24).await?; // 24 hours

if price_history.len() < 2 {
return Ok(0.02); // Default 2% volatility
}

// Calculate returns
let returns: Vec<f64> = price_history
.windows(2)
.map(|window| (window[1] / window[0]).ln())
.collect();

// Calculate standard deviation (volatility)
let mean_return = returns.iter().sum::<f64>() / returns.len() as f64;
let variance = returns
.iter()
.map(|r| (r - mean_return).powi(2))
.sum::<f64>() / returns.len() as f64;

Ok(variance.sqrt())
}
}

3. Delta-Neutral Strategy​

Maintains price-neutral positions through hedging:

pub struct DeltaNeutralStrategy {
hedge_ratio: f64,
rehedge_threshold: f64,
perp_exchange_client: Option<PerpExchangeClient>,
}

#[async_trait]
impl AmmStrategy for DeltaNeutralStrategy {
async fn calculate_position_params(
&self,
pool: &DlmmPool,
available_capital: u64,
) -> Result<PositionParams, AmmError> {
// Create narrow range around current price
let current_price = pool.get_current_price()?;
let tight_range = 0.005; // 0.5% range

let lower_price = current_price * (1.0 - tight_range);
let upper_price = current_price * (1.0 + tight_range);

let lower_bin = pool.price_to_bin_id(lower_price)?;
let upper_bin = pool.price_to_bin_id(upper_price)?;

Ok(PositionParams {
lower_bin,
upper_bin,
liquidity_x: available_capital / 2,
liquidity_y: available_capital / 2,
strategy_type: StrategyType::DeltaNeutral {
hedge_ratio: self.hedge_ratio
},
})
}

async fn should_rebalance(
&self,
position: &LiquidityPosition,
pool: &DlmmPool,
) -> Result<bool, AmmError> {
if let Some(perp_client) = &self.perp_exchange_client {
let current_delta = self.calculate_position_delta(position, pool)?;
let hedge_delta = perp_client.get_position_delta().await?;

let net_delta = current_delta + hedge_delta;
let delta_threshold = position.total_value() as f64 * self.rehedge_threshold;

Ok(net_delta.abs() > delta_threshold)
} else {
// Without perp integration, rebalance based on range exit
let current_bin = pool.active_id;
Ok(current_bin <= position.lower_bin || current_bin >= position.upper_bin)
}
}

fn calculate_position_delta(
&self,
position: &LiquidityPosition,
pool: &DlmmPool,
) -> Result<f64, AmmError> {
let current_price = pool.get_current_price()?;

// Calculate delta of liquidity position
// Delta = d(position_value) / d(price)
let position_value = position.liquidity_x as f64 +
(position.liquidity_y as f64 * current_price);

// Numerical delta calculation
let price_delta = current_price * 0.001; // 0.1% price change
let new_price = current_price + price_delta;
let new_value = position.liquidity_x as f64 +
(position.liquidity_y as f64 * new_price);

Ok((new_value - position_value) / price_delta)
}
}

// Mock perp exchange client for delta-neutral hedging
#[async_trait]
pub trait PerpExchangeClient: Send + Sync {
async fn get_position_delta(&self) -> Result<f64, AmmError>;
async fn adjust_hedge_position(&self, target_delta: f64) -> Result<String, AmmError>;
}

Strategy Implementation Examples​

Market Making Strategy​

pub struct MarketMakingStrategy {
spread_bps: u64,
inventory_target: f64,
max_position_size: u64,
risk_limits: RiskLimits,
}

#[derive(Debug, Clone)]
pub struct RiskLimits {
pub max_drawdown: f64,
pub max_position_size: u64,
pub daily_loss_limit: u64,
}

#[async_trait]
impl AmmStrategy for MarketMakingStrategy {
async fn calculate_position_params(
&self,
pool: &DlmmPool,
available_capital: u64,
) -> Result<PositionParams, AmmError> {
let current_price = pool.get_current_price()?;
let spread = self.spread_bps as f64 / 10000.0;

// Create tight bid-ask spread
let bid_price = current_price * (1.0 - spread / 2.0);
let ask_price = current_price * (1.0 + spread / 2.0);

let lower_bin = pool.price_to_bin_id(bid_price)?;
let upper_bin = pool.price_to_bin_id(ask_price)?;

// Adjust position size based on risk limits
let position_size = std::cmp::min(
available_capital,
self.risk_limits.max_position_size,
);

// Inventory management: adjust token distribution
let inventory_ratio = self.get_current_inventory_ratio(pool).await?;
let (liquidity_x, liquidity_y) = self.adjust_for_inventory(
position_size,
inventory_ratio,
);

Ok(PositionParams {
lower_bin,
upper_bin,
liquidity_x,
liquidity_y,
strategy_type: StrategyType::MarketMaking {
spread_bps: self.spread_bps,
},
})
}

async fn get_current_inventory_ratio(
&self,
pool: &DlmmPool,
) -> Result<f64, AmmError> {
// Get wallet token balances
let token_x_balance = pool.get_token_balance(pool.token_x_mint).await?;
let token_y_balance = pool.get_token_balance(pool.token_y_mint).await?;
let current_price = pool.get_current_price()?;

let total_value = token_x_balance as f64 +
(token_y_balance as f64 * current_price);

if total_value == 0.0 {
return Ok(0.5); // 50/50 default
}

Ok(token_x_balance as f64 / total_value)
}

fn adjust_for_inventory(
&self,
total_capital: u64,
current_inventory_ratio: f64,
) -> (u64, u64) {
// Adjust towards target inventory ratio
let target_ratio = self.inventory_target;
let adjustment_factor = 0.1; // 10% adjustment per rebalance

let adjusted_ratio = current_inventory_ratio +
(target_ratio - current_inventory_ratio) * adjustment_factor;

let liquidity_x = (total_capital as f64 * adjusted_ratio) as u64;
let liquidity_y = total_capital - liquidity_x;

(liquidity_x, liquidity_y)
}
}

Volatility Farming Strategy​

Captures fees from high-volatility periods:

pub struct VolatilityFarmingStrategy {
volatility_threshold: f64,
dynamic_range_multiplier: f64,
fee_collection_threshold: u64,
}

#[async_trait]
impl AmmStrategy for VolatilityFarmingStrategy {
async fn calculate_position_params(
&self,
pool: &DlmmPool,
available_capital: u64,
) -> Result<PositionParams, AmmError> {
let volatility = self.estimate_current_volatility(pool).await?;

// Adjust range based on volatility
let base_range = 0.02; // 2% base range
let volatility_adjusted_range = if volatility > self.volatility_threshold {
base_range * self.dynamic_range_multiplier // Widen range in high volatility
} else {
base_range / self.dynamic_range_multiplier // Narrow range in low volatility
};

let current_price = pool.get_current_price()?;
let lower_price = current_price * (1.0 - volatility_adjusted_range);
let upper_price = current_price * (1.0 + volatility_adjusted_range);

let lower_bin = pool.price_to_bin_id(lower_price)?;
let upper_bin = pool.price_to_bin_id(upper_price)?;

Ok(PositionParams {
lower_bin,
upper_bin,
liquidity_x: available_capital / 2,
liquidity_y: available_capital / 2,
strategy_type: StrategyType::VolatilityFarming {
volatility_threshold: self.volatility_threshold
},
})
}

async fn estimate_current_volatility(
&self,
pool: &DlmmPool,
) -> Result<f64, AmmError> {
let price_data = pool.get_price_history(100).await?; // Last 100 data points

if price_data.len() < 10 {
return Ok(0.02); // Default 2% volatility
}

// Calculate rolling volatility
let returns: Vec<f64> = price_data
.windows(2)
.map(|window| (window[1] / window[0]).ln())
.collect();

let recent_returns = &returns[returns.len().saturating_sub(20)..]; // Last 20 returns
let mean = recent_returns.iter().sum::<f64>() / recent_returns.len() as f64;

let variance = recent_returns
.iter()
.map(|r| (r - mean).powi(2))
.sum::<f64>() / recent_returns.len() as f64;

Ok(variance.sqrt())
}
}

Strategy Factory​

Create and manage multiple strategies:

pub struct StrategyFactory;

impl StrategyFactory {
pub fn create_strategy(
strategy_type: &str,
config: StrategyConfig,
) -> Result<Box<dyn AmmStrategy>, AmmError> {
match strategy_type {
"passive_range" => Ok(Box::new(PassiveRangeStrategy {
range_percentage: config.range_percentage.unwrap_or(0.02),
min_position_size: config.min_position_size.unwrap_or(10_000),
})),
"active_rebalancing" => Ok(Box::new(ActiveRebalancingStrategy {
trigger_percentage: config.trigger_percentage.unwrap_or(0.05),
max_gas_cost_percentage: config.max_gas_cost_percentage.unwrap_or(0.001),
rebalance_cooldown: std::time::Duration::from_secs(
config.rebalance_cooldown_seconds.unwrap_or(300)
),
last_rebalance: std::sync::Arc::new(
std::sync::RwLock::new(std::time::Instant::now())
),
})),
"volatility_farming" => Ok(Box::new(VolatilityFarmingStrategy {
volatility_threshold: config.volatility_threshold.unwrap_or(0.05),
dynamic_range_multiplier: config.dynamic_range_multiplier.unwrap_or(2.0),
fee_collection_threshold: config.fee_collection_threshold.unwrap_or(50_000),
})),
_ => Err(AmmError::UnsupportedStrategy(strategy_type.to_string())),
}
}
}

#[derive(Debug, Clone)]
pub struct StrategyConfig {
pub range_percentage: Option<f64>,
pub trigger_percentage: Option<f64>,
pub min_position_size: Option<u64>,
pub max_gas_cost_percentage: Option<f64>,
pub rebalance_cooldown_seconds: Option<u64>,
pub volatility_threshold: Option<f64>,
pub dynamic_range_multiplier: Option<f64>,
pub fee_collection_threshold: Option<u64>,
}

Strategy Manager​

Orchestrate multiple strategies across different pools:

pub struct StrategyManager {
strategies: std::collections::HashMap<Pubkey, Box<dyn AmmStrategy>>,
positions: std::collections::HashMap<Pubkey, LiquidityPosition>,
dlmm_client: Arc<DlmmClient>,
performance_tracker: PerformanceTracker,
}

impl StrategyManager {
pub fn new(dlmm_client: Arc<DlmmClient>) -> Self {
Self {
strategies: std::collections::HashMap::new(),
positions: std::collections::HashMap::new(),
dlmm_client,
performance_tracker: PerformanceTracker::new(),
}
}

pub async fn add_strategy(
&mut self,
pool_address: Pubkey,
strategy: Box<dyn AmmStrategy>,
initial_capital: u64,
) -> Result<(), AmmError> {
// Load pool
let pool = self.dlmm_client.load_pool(pool_address).await?;

// Calculate position parameters
let params = strategy
.calculate_position_params(&pool, initial_capital)
.await?;

// Create initial position
let position = self.dlmm_client
.create_position(pool_address, params)
.await?;

// Store strategy and position
self.strategies.insert(pool_address, strategy);
self.positions.insert(pool_address, position);

println!("Strategy deployed for pool: {}", pool_address);
Ok(())
}

pub async fn run_strategy_loop(&mut self) -> Result<(), AmmError> {
let mut interval = tokio::time::interval(std::time::Duration::from_secs(10));

loop {
interval.tick().await;

// Check all positions for rebalancing opportunities
for (pool_address, strategy) in &self.strategies {
if let Some(position) = self.positions.get_mut(pool_address) {
match self.check_and_rebalance(pool_address, position, strategy).await {
Ok(rebalanced) => {
if rebalanced {
self.performance_tracker
.record_rebalance(*pool_address)
.await;
}
},
Err(e) => {
eprintln!("Error checking position {}: {:?}", pool_address, e);
}
}
}
}

// Collect fees periodically
self.collect_all_fees().await?;
}
}

async fn check_and_rebalance(
&self,
pool_address: &Pubkey,
position: &mut LiquidityPosition,
strategy: &Box<dyn AmmStrategy>,
) -> Result<bool, AmmError> {
let pool = self.dlmm_client.load_pool(*pool_address).await?;

if strategy.should_rebalance(position, &pool).await? {
println!("Rebalancing position for pool: {}", pool_address);

let rebalance_result = strategy
.rebalance_position(position, &pool)
.await?;

// Update stored position
*position = rebalance_result.new_position;

println!("Rebalancing completed: {}", rebalance_result.transaction_signature);
Ok(true)
} else {
Ok(false)
}
}

async fn collect_all_fees(&mut self) -> Result<(), AmmError> {
for (pool_address, position) in &self.positions {
let fees = self.dlmm_client
.get_position_fees(&position.address)
.await?;

// Collect if fees are substantial
if fees.fee_x > 10_000 || fees.fee_y > 10_000 {
let result = self.dlmm_client
.collect_fees(&position.address)
.await?;

self.performance_tracker
.record_fee_collection(*pool_address, fees.fee_x + fees.fee_y)
.await;

println!("Collected fees for {}: {}", pool_address, result.signature);
}
}

Ok(())
}
}

Performance Tracking​

use std::collections::HashMap;
use serde::{Serialize, Deserialize};

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PerformanceMetrics {
pub total_fees_collected: u64,
pub total_gas_spent: u64,
pub successful_rebalances: u32,
pub failed_rebalances: u32,
pub average_position_duration: std::time::Duration,
pub roi_percentage: f64,
}

pub struct PerformanceTracker {
metrics: HashMap<Pubkey, PerformanceMetrics>,
start_time: std::time::Instant,
}

impl PerformanceTracker {
pub fn new() -> Self {
Self {
metrics: HashMap::new(),
start_time: std::time::Instant::now(),
}
}

pub async fn record_fee_collection(
&mut self,
pool_address: Pubkey,
fee_amount: u64,
) {
let metrics = self.metrics
.entry(pool_address)
.or_insert_with(|| PerformanceMetrics::default());

metrics.total_fees_collected += fee_amount;
}

pub async fn record_rebalance(&mut self, pool_address: Pubkey) {
let metrics = self.metrics
.entry(pool_address)
.or_insert_with(|| PerformanceMetrics::default());

metrics.successful_rebalances += 1;
}

pub fn generate_report(&self) -> String {
let mut report = String::new();
report.push_str(&format!("Performance Report (Runtime: {:.2} hours)\n",
self.start_time.elapsed().as_secs_f64() / 3600.0));
report.push_str(&format!("{:-<60}\n", ""));

for (pool_address, metrics) in &self.metrics {
report.push_str(&format!("Pool: {}\n", pool_address));
report.push_str(&format!(" Fees Collected: {}\n", metrics.total_fees_collected));
report.push_str(&format!(" Gas Spent: {}\n", metrics.total_gas_spent));
report.push_str(&format!(" Successful Rebalances: {}\n", metrics.successful_rebalances));
report.push_str(&format!(" ROI: {:.2}%\n", metrics.roi_percentage));
report.push_str("\n");
}

report
}
}

impl Default for PerformanceMetrics {
fn default() -> Self {
Self {
total_fees_collected: 0,
total_gas_spent: 0,
successful_rebalances: 0,
failed_rebalances: 0,
average_position_duration: std::time::Duration::from_secs(0),
roi_percentage: 0.0,
}
}
}

Testing Strategies​

#[cfg(test)]
mod tests {
use super::*;
use mockall::mock;

// Mock DLMM client for testing
mock! {
DlmmClient {
async fn load_pool(&self, address: Pubkey) -> Result<DlmmPool, AmmError>;
async fn create_position(
&self,
pool_address: Pubkey,
params: PositionParams
) -> Result<LiquidityPosition, AmmError>;
}
}

#[tokio::test]
async fn test_passive_range_strategy() {
let mut mock_client = MockDlmmClient::new();

// Set up mock expectations
mock_client
.expect_load_pool()
.returning(|_| Ok(create_test_pool()));

let strategy = PassiveRangeStrategy {
range_percentage: 0.02,
min_position_size: 1000,
};

let pool = create_test_pool();
let params = strategy
.calculate_position_params(&pool, 100_000)
.await
.unwrap();

assert_eq!(params.liquidity_x, 50_000);
assert_eq!(params.liquidity_y, 50_000);

// Test bin range is within expected bounds
let price_range = pool.bin_id_to_price(params.upper_bin).unwrap() -
pool.bin_id_to_price(params.lower_bin).unwrap();
let expected_range = pool.get_current_price().unwrap() * 0.04; // 2% * 2

assert!((price_range - expected_range).abs() < expected_range * 0.1);
}

fn create_test_pool() -> DlmmPool {
// Create mock pool for testing
DlmmPool::new_test_instance(
Pubkey::new_unique(),
Pubkey::new_unique(),
Pubkey::new_unique(),
1000, // Active bin
25, // Bin step
100, // Fee rate
)
}
}

Best Practices​

1. Error Handling​

#[derive(Debug, thiserror::Error)]
pub enum AmmError {
#[error("Pool not found: {0}")]
PoolNotFound(Pubkey),

#[error("Insufficient liquidity for operation")]
InsufficientLiquidity,

#[error("Strategy error: {0}")]
StrategyError(String),

#[error("Network error: {0}")]
NetworkError(String),

#[error("Unsupported strategy: {0}")]
UnsupportedStrategy(String),
}

2. Configuration Management​

use serde::{Deserialize, Serialize};

#[derive(Debug, Serialize, Deserialize)]
pub struct StrategyConfiguration {
pub strategies: HashMap<String, StrategyParams>,
pub risk_management: RiskManagementConfig,
pub performance_targets: PerformanceTargets,
}

#[derive(Debug, Serialize, Deserialize)]
pub struct StrategyParams {
pub strategy_type: String,
pub pool_addresses: Vec<String>,
pub capital_allocation: u64,
pub config: StrategyConfig,
}

impl StrategyConfiguration {
pub fn load_from_file(path: &str) -> Result<Self, AmmError> {
let content = std::fs::read_to_string(path)?;
let config: StrategyConfiguration = toml::from_str(&content)?;
Ok(config)
}
}

3. Monitoring and Alerts​

pub struct AlertSystem {
discord_webhook: Option<String>,
slack_webhook: Option<String>,
}

impl AlertSystem {
pub async fn send_performance_alert(
&self,
pool_address: Pubkey,
message: &str,
severity: AlertSeverity,
) -> Result<(), AmmError> {
let alert_message = format!(
"[{}] Pool {}: {}",
severity,
pool_address,
message
);

if let Some(webhook) = &self.discord_webhook {
self.send_discord_message(webhook, &alert_message).await?;
}

println!("ALERT: {}", alert_message);
Ok(())
}
}

#[derive(Debug)]
pub enum AlertSeverity {
Info,
Warning,
Critical,
}

The AMM trait system provides a powerful foundation for building sophisticated liquidity strategies. Combine multiple strategies, implement custom logic, and monitor performance to maximize returns while managing risk.